This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBH1.2019.2912708, IEEE Journal of
Biomedical and Health Informatics

1

Robust Heart Rate Monitoring for Quasi-periodic
Motions by Wrist-Type PPG Signals

Wenwen He Student Member, IEEE{alan Ye , Member, IEEELi Lu, Member, IEEE,Yunfei Cheng,Student
Member, IEEE,Yunxia Li, and Zhengning Wang

AbstractHeart rate (HR) monitoring using photoplethysmog- reference signal. Since these techniques were proposed for
raphy (PPG) is a promising feature in modern wearable devices. some small motions, such as nger movements [5], walking
PPG is easily contaminated by motion artifacts (MA), hindering [7] and slow running [8], where MA was not strong, these

estimation of HR. For quasi-periodic motions, previous works techni t K Il wh itori HR duri
generally focused on a few specic motions, such as walking [ECNNIQUES may not work well when monitoring uring

and fast running. However, they may not work well for many Physical exercise [3].

different quasi-periodic motions where MA are very complex. Other techniques, which were proposed for strong motions
In this paper, a robust HR monitoring scheme for different in physical exercise, were recently investigated, such as adap-
quasi-periodic motions using wrist-type PPG is proposed, which e |tering (used for strong motions in physical exercise)

consists of dictionary learning for signal characteristics learning, . "
human motion recognition for the current motion recognition and [9], [10], [11], [12], empirical mode decomposition (EMD)

dictionary selection, sparse representation-based MA elimination [13], [14], singular spectrum analysis (SSA) [3], spectrum
for denoising, and spectral peak tracking for HR-related spectral subtraction (SS) [15], [16], winer Itering [17] and patrticle
peak tracking. The proposed scheme is robust to MA caused Iter [18]. Most of them utilized acceleration signals as the
by different motions and has high accuracy. Experiments on siX raference signals of MA, showing good performance in some

common quasi-periodic motions showed that the average absolute . -
error of heart rate estimation was 2.40 beat per minute, and also scenarios. However, these techniques only focused on a few

showed that the proposed method is more robust than some state- SPECI € quasi-periodic motions, such as walking and fast
of-the-art approaches for different motions. running. For speci ¢ motions, these techniques can adjust their

Index Terms Heart rate monitoring, photoplethysmography parameters to work weII_. However, the admste_d parameters
(PPG), motion artifacts, sparse representation, wearable sensors. May not work well for different types of intensive physical
exercises in the real world including many different quasi-
periodic motions, such as elliptical trainer, where the hand
movements have different directions which may result in more
complex MA.

EART rate (HR) monitoring based on modern wearable |n this paper, a robust HR monitoring scheme using wrist-

devices is of interest due to its useful features itype PPG during different types of quasi-periodic motions
controlling training load or health monitoring during physis proposed, being composed of four key parts: dictionary
ical exercise. Photoplethysmography (PPG) signals [1] hal@rning, human motion recognition, sparse representation-
shown its potential in HR monitoring during physical exercisgased MA elimination, and spectral peak tracking. Dictionary
because of its simpler hardware implementation and lowfarning aims to obtain different PPG and MA dictionaries to
cost over traditional Electrocardiograph (ECG) signals [2fepresent PPG signals and different MAs caused by different
However, PPG is susceptible to motion artifacts (MA) [3lquasi-periodic motions, where one kind of motion corresponds
making HR monitoring based on PPG a dif cult problem. to one PPG dictionary and one MA dictionary. Human mo-

Some methods, which were proposed for small motiongen recognition aims to recognize the current motion and
have been investigated. One is independent component angigreby select the corresponding PPG and MA dictionaries.
sis (ICA) [4], [5]. However, statistical independence (the keysing the selected PPG dictionary and MA dictionary, sparse
assumption in ICA) does not hold in PPG signals contaminateshresentation-based MA elimination aims to eliminate MA
by MA [6], resulting in unsatisfactory performance of MAcaused by the current motion. Using the cleansed PPG signal
elimination. Another method is adaptive Itering (used fomfter sparse representation, spectral peak tracking aims to
small motions) [7], [8]. But adaptive ltering is sensitive tolocate the HR-related spectral peak. Experiments on many
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I. INTRODUCTION
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complex MA. To monitor HR during intensive physical Another kind of technique is spectrum subtraction (SS)
exercises, it is necessary to design a robust HR moamissisted by acceleration signals [14], [15], [22]. It removed
toring technique for many different strong quasi-periodiMA by subtracting the spectrum (calculated by Periodogram)
motions. At present, for quasi-periodic motions, mosif the acceleration signal from the spectrum of the PPG signal.
HR monitoring techniques only considered a few speci ¢ Adaptive noise cancellation (ANC) assisted by acceleration
motions, such as walking and fast running. However, thejgnals was also exploited to remove MA [12], [17]. For
may not work well during many other different quasiexample, one work that we recently proposed in [12] used
periodic motions which may cause very complex MAnonlinear adaptive ltering with acceleration signals being the
To overcome the above issue, a robust HR monitoririgference signals of MA. However, ANC is sensitive to the
technigue for many different quasi-periodic motions usingrede ned reference signal. If the prede ned reference signal
PPG is proposed in this paper, which is more suitable faras not chosen properly, the performance of MA elimination
practical application scenario. may be affected. To overcome this issue, another reference
To eliminate different MAs caused by different strondg24] proposed using ANC with four prede ned reference
quasi-periodic motions, we propose combining humasignals, instead of only one prede ned reference signal.
motion recognition and dictionary learning-based sparseThe three kinds of techniques mentioned above obtained
representation. Human motion recognition can recognigatisfactory results to some extent. Unfortunately, we notice
the motion that the current subject is performing, and théhat the performance of most of these techniques were only
automatically select the dictionaries corresponding to tievaluated using speci c physical exercises including a few
motion. Using the corresponding dictionaries, dictionargpeci ¢ motions, such as walking and fast running. In practice,
learning-based sparse representation can represent sinde there are many different types of intensive physical
separate PPG and MA caused by this motion, and thexercises that include many different quasi-periodic motions,
can obtain the clean PPG signal. such as deep keen bend and elliptical trainer, we have to
The performance on different types of intensive physope with HR monitoring under many different quasi-periodic
ical exercises being composed of six typical strongpotions, where hand movements have different directions and
quasi-periodic motions (walking, fast running, beckonindghus cause more complex MA.

swing arm, elliptical trainer and deep keen bend) related To visually see different quasi-periodic motions, an example
to hand movements were shown in our experiment®, Fig. 1 shows segments of three-axis acceleration signals
because the main source of MA is from hand movemerftom three different quasi-periodic motions: fast running,
[15]. Experiments on the six typical motions proved thaglliptical trainer and deep keen bend. The example shows
the proposed approach can achieve an accurate estinigifold information.

of HR, and it is also robust to different MAs caused
by different quasi-periodic motions in different types of
physical exercises, indicating that the proposed approach
has potential to be used in HR computation of wearable

From Fig. 1(a), Fig. 1(c) and Fig. 1(e) where the signal
segments are from one subject, (or Fig. 1(b), Fig. 1(d)
and Fig. 1(f) where the signal segments are from another
subject), we can see that the acceleration signals from

different motions have different characteristics because of
different directions of hand movements, which may cause
different characteristics of MA in PPG signals recorded
by different motions. It indicates that MA caused by dif-
ferent motions are different and very complex, resulting
in that it is dif cult to eliminate MA caused by different
motions.

From the acceleration signals of fast running (Fig. 1(a)
and Fig. 1(b)) from two different subjects, we can see that
the acceleration signals from the same kind of motion
have similar characteristics. In other words, the acceler-
ation signals from the same kind of motion are regular.
Since acceleration signals have strong correlation with
MA [20], MA from the same kind of motion may have
similar characteristics. If the characteristics of MA caused

sensors during physical exercises.

II. MOTIVATION

PPG recorded during physical exercise is easily contam-
inated by MA. One major source of MA is the voluntary
or involuntary subject movement which can make the gap
(between the sensor and the skin) easily enlarged by hand
movements during physical exercises [15]. Removal of MA
can not be easily performed because of the likely spectral and
temporal similarity between PPG and MA [19]. Acceleration
signals are shown to be powerful in eliminating MA because
of the strong correlation between acceleration signals and
MA [20]. There are mainly three kinds of methods using
acceleration signals as the reference signals of MA, as follows.

One kind of technique is signal decomposition assisted by by one kind of quasi-periodic motion can be learned, MA
acceleration signals [3], [14], [21]. For example, in [3], a caused by this kind of motion can be eliminated.
method using singular spectrum analysis (SSA) assisted byrhis example motivates using sparse representation based
acceleration signals was proposed to eliminate MA. First, S®A dictionary learning to eliminate different MAs caused by
is exploited to decompose a raw PPG into many componerdgferent motions. Since the acceleration signals from the same
Then a spectral peak associated with MA in a componentkiid of quasi-periodic motion are regular and are sparse in cer-
identi ed by checking whether there is also a spectral peddin transform domain, the characteristics of MA, which have
in the spectrum of acceleration signals at the same frequerstsong correlation with acceleration signals, from the same
bin. kind of quasi-periodic motion can be learned by dictionary
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Fig. 1. An example showing segments of simultaneously recorded raw acceleration signals from three different quasi-periodic
motions: fast running, elliptical trainer and deep keen bend. Fig. 1(a) and Fig. 1(b) show the signals recorded during fast
running from two different subjects. Fig. 1(c) and Fig. 1(d) show the signals recorded during elliptical trainer from two
different subjects. Fig. 1(e) and Fig. 1(f) show the signals recorded during deep keen bend from two different subjects.

learning. In other words, dictionary learning can be used tolll. PROPOSEDHEART RATE MONITORING APPROACH
learn a MA dictionary for representing MA caused by this kind T

he proposed HR monitoring approach is composed of four
of motion through the acceleration signals. Then different M%eg brop roring app ! P u

- . . : arts: dictionary learning for learning different PPG and
dictionaries can be learned through the acceleration sign P y g g

. ) . i dictionaries, human motion recognition used to recognize
from different motions, used for representing different MAS, g g

. ) - : . " Which kind of motion one subject is performing and thereby
cau_sed by different motions. Similarly, d|ff_erent PPG d_'Ct'oéeIecting the corresponding dictionaries, sparse representation-
naries can be learned through clean PPG signals from differ

B35ed MA elimination for eliminating MA with the selected

mot!ons, usgd for representing PPG recorQeq ffOT“ d|ffere|g|gG dictionary and MA dictionary, and spectral peak tracking
motions. Using the learned PPG and MA dictionaries, SPars€aq to locate the spectral of HR value via a algorithm

representation can remove different MAs caused by differq% proposed in [12]. The owchart of the proposed HR
motions. Based on the proposed MA elimination method, onitoring approach i's shown in Fig. 2

can effectively eliminate different MAs caused by different Before starting the proposed HR monitoring approach, we

motions. exploit a preprocessing step called band passing to remove
noise and MA outside of the frequency band of interest. The

2168-2194 (c) 2018 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBH1.2019.2912708, IEEE Journal of
Biomedical and Health Informatics

4

proposed HR monitoring approach uses raw PPG signals amdl thus the approximately clean PPG signals from Motionl
simultaneously recorded acceleration signals. A time windavan be used. In our experiments, the rst way is adopted.
of 8 seconds is sliding on the signals with incremental step 8peci cally, one method proposed in our previous work [12]
2 seconds. The proposed HR monitoring approach estimaiesised to process the raw PPG signals used for training.
HR in each time window. By means of dictionary learning, a PPG diction&y(used

to represent PPG signals) can be learned from a training set
! 3 which is assemble of STFT magnitudes of clean PPG signals
} from many time windows. Also, via dictionary learning, a MA
| i dictionaryR (used to represent the MA caused by certain kind
! | ; of quasi-periodic motion) can be learned from a traininget
5. +aode | SIS 2IZI, | oenoneaasy +i08. 1 which is assemble of STFT magnitudes of acceleration signals

9701+ #.00% [ 7848+(4.5*+(
0" H., +¥$* +

AT IO(+ @t | 23(marra$ corresponding to this motion from many time windows.
R can be obtained by solving the following optimization

5 #61)7( !"’?62/‘(’5%53)( 8)(1./(2#$$%o#,0.1)# problem:
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, , 5
Fig. 2: The owchart of the proposed HR monitoring ap- min S RC sit: 8ikeky, Q)
proach. R; C F

where k k. denotes the Frobenius norrkk , denotes the
number of elements which are not zero.denotes a small
A. Dictionary learning positive integer. In equation(1), the training 2 RP W

. . W
The goal of this part is to learn the PPG dictionaries and t geing assemble of training sam_pl_es) stands #9g,, . Here
denotes the length of one training sample, &iddenotes

MA dictionaries corresponding to different motions, preparing‘y]e number of training samples. A dictionaRy 2 R® M
for the part of sparse representation-based MA eIiminatioSr}. 9 pies.

M .

Prede ned transform basis and dictionary learning are twoan(.js forf ; %},le (wherer, denote\s one atom), and a coding
main methods to obtain dictionary. Dictionary learning ignatnxc 2R .stands .fo_rfei g, - HereM denotes the
used in this paper because it has encouraging potentialn mber of atoms none d|ct|o_nary. . T
provide a sparser representation compared with prede ned car? be obtained by solving the following optimization
transform basis [25], [26]. For PPG signals used for arterigfc’blem'
blood pressure estimation, dictionary learning was adopted . 5 )
in [27]. The reference [27] proved that the characteristic of mn kS RCkp st 8iikciky 2
PPG signals can be learned by dictionary learning. In our ]
work, dictionary learning is implemented in feature transforifyherek k. denotes the Frobenius norm,denotes a Small
domain in order to make PPG and acceleration signals (tP@sitive integer, the training s&t2 RPN stands foffs g2, -
reference signals of MA) sparse. Short-time Fourier transforfftere D denotes the length of one training sample, ahd
(STFT) is used because STFT is simple and easy to impleméifhotes the number of training samples. A dictionBry2

For dictionary learning, training data are required. SpeciR® - stands forfr igz, , and a coding matrbC 2 RtN
cally, clean PPG signals from one motion are required to lesgtand forfc g, . HereL denotes the number of atoms in one
the PPG dictionary of one motion, and acceleration signalitionary.
from one motion are required to learn the MA dictionary of The two constrained problems expressed by equation (1)
one motion. Acceleration signals for one motion are easily @nd (2) can be solved by many algorithms, such as method
be obtained, whereas clean PPG signals for one motion @fe@ptimal directions (MOD) [28], [30] and k - singular value
dif cult to obtain because the PPG signals recorded durir@ecomposition (K-SVD) [26]. For illustration, we chose MOD
motions often contain MA. There are mainly two ways to géf our experiments. Since equation (1) and (2) are two similar
clean PPG signals for one motion. The rst way is to use thgroblems, we only describe how to solve equation (2) using
signals after being processed by some other MA eliminatid4OD as follows.
methods. For example, one MA elimination method can beTo updateR and C iteratively, MOD uses a two phase
selected to process the raw PPG signals used for trainingajfproach: sparse coding stage and dictionary update stage. The
the signals after being processed by the method are clean, tie steps of MOD are as follows.
signals after being processed by the method would constitutdn sparse coding stag® is xed. Any pursuit algorithm,
training data. The second way is to select the PPG signalgch as orthogonal matching pursuit (OMP) [31], can be used
being approximately clean from some other motions. For ef¢ compute each columay by approximating the solution of
ample, the approximately clean PPG signals from one motion n o
(denoted by Motionl) can be used as the training signals of min ks Rcikg sitt keiky, (3)
another motion (denoted by Motion2). At this time, the HR ¢
values of the signals from Motion1 should be similar to the HRherec; stands for one column i@, s; stands for one column
values of the signals from Motion2. If they have similar HRn S, and denotes the max number of coef cients for each
values, the clean PPG signals for the two motions are similaignals;.
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After the sparse coding stage, for each examples; is recognize the motion one subject is performing in one time
known. Thus errorg; = s; Rc; can be obtained. The overallwindow. Once the motion one subject is performing has been
representation mean square error can be represented by recognized, the PPG and the MA dictionaries corresponding

to this motion would be selected.
KEKZ = kep;ez;::i;enki = kS RCK:E: (4
wherek k. denotes the Frobenius norm. C. Sparse representation-based MA elimination

In dictionary update stag€, is xed. We can nd an update In this subsection, a correlation decision is rst introduced.
to R such that the above error (represented by equation(@rrelation decision is used to determine whether the raw PPG
is minimized.R can be obtained by taking the derivative ofignal contains very strong MA. Then sparse representation-

equation(4) with respect tB, and the obtaine®R is based MA elimination is introduced.
1) Correlation decision:
R=SC (cc™)?!: (5) This step aims to determine whether the raw PPG signal

i o contains very strong MA by calculating the correlation be-
Repeat the sparse coding stage and the dictionary updgien the STFT magnitudes of the raw PPG signal and the ac-

stage until convergence. Finally, MOD can produce a PFGyeration signal. If the Pearson correlation value between the

dictionary R that approximatesS sparsely and accurately. sTET magnitudes of the raw PPG signal and the acceleration

Similarly, MOD can produce a MA dictionarf? that approx- signal is not very high, the raw PPG signal does not contain

imatesS sparsely and accuratelR andR will be used in ey sirong MA. At this time, to avoid the disturbance of

the part of sparse representation-based MA elimination.  the'MA dictionary which comes from the acceleration signals,
there is no need to use the MA dictionary

B. Human motion recognition Before the correlation decision, STFT is used to transform

The purpose of this part is to use acceleration signals ¥ raw PPG signal and the acceleration signal after bandpass
recognize which motion one subject is performing, in order t§€7iNg; Sraw @nd &y , into signals in STFT magnitude
automatically choose a PPG dictionary and a MA dictiona§Pmain, expressed by
porrespondmg to th|§ m_otlon. One commonly-used algorlthm X = |STFT(S raw )i ;
is XGBoost [32], which is a scalable end-to-end tree boosting A = jSTFT(a raw )i : (6)
system. Since XGBoost has achieved state-of-the-art results
on many machine learning challenges [32], it is selected whereX 2 R™" denotes the STFT amplitude sfy , A 2
the classi er in our experiments. RM™"  denotes the STFT amplitude @f,, . m denotes a

Note that, to train XGBoost-based classi er, training dattiequency range from 0 to 5 Hz, which is selected because the
(acceleration signals from many time windows) are requireiequency of HR exists in the frequency range from 0 to 5 Hz.
When collecting training data, like the part of dictionary learr? denotes the number of time windows. Here the acceleration
ing, we used the leave-one-subject-out method. Speci calignal after bandpass lterin@aw , iS @ summation of three-
the data from one subject in one data set were used as teséiiig acceleration signals after bandpass Itering.
data, while the data from the remaining subjects in one datalhen X is transformed to into a column vectox, 2
set were used as training data. RMM 1 “which is composed of the column vectorsXf A

1) Classi er training: is transformed to into a column vecta,2 R™M™M*  which

Feature extraction.Before training the classier, feature is composed of the column vectors Af Here m n denotes
vectors being the input of the classi er need to be extractdle multiplication ofm andn.
from the training data. A feature vector is composed of the Next we measure whether the Pearson correlation value
features: kurtosis, skewness, energy, spectral mean, specttal betweenx anda satis es
kurtosis, spectral skewness, the sum of energy for each sub-
band signal obtained by wavelet transform, the sum of the J corr ] corr ; (7)
mean for each sub-band signal, and the sum of the stan
deviation for each sub-band signal. One feature vector IS¢
normalized so that the range of features is between -1 ap
1. Finally, a lot of feature vectors are obtained, forming as
training set.

Classi er training. The training set was used to train the
XGBoost-based classi er to obtain the classi er parameters
for predicting. where D denotes the dictionary that will be used in sparse

2) Human motion recognition using the trained classi er: representation-based MA elimination.

After training the XGBoost-based classi er, this step is to If .o can not satisfy (7), the raw PPG signal is identi ed
determine which kind of motion one subject is performingas a not clean signal. At this time, both the PPG dictionary
The features mentioned in the last step are extracted fromared the MA dictionary will be used. This can be expressed by
three-axis acceleration signal in the current time window. The
features will be used as the input of the classier, used to D=[RR]; 9)

re cor IS @ preset threshold.

corr Can satisfy (7), the raw PPG signal is identi ed as
lean signal. At this time, only the PPG dictionary will be
ed. This can be expressed by

D =R, (8)
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where D denotes the dictionary that will be used in sparse After using OMP to solve the sparse representation problem
representation-based MA elimination. (9), we obtain the sparse coef cients vectpvhergc = c.
2) Sparse representation-based MA elimination: if D = R,andc = [c. Cr]T if D = RR . Then
Sparse representation-based MA elimination is to eliminalige clean speech magnitude is estimated by disregarding the
MA in a raw PPG signal using sparse representation. Spaggtribution from the MA dictionary, preserving only the
representation (using sparse as a condition) is an emergjiigar combination of PPG dictionary atoms. An estimate of

signal processing technique, showing great potentials in maRg STFT magnitude of a cleansed PPG segnfentan be
application elds [33], [34], [35]. PPG and acceleration signalgptained by

(the reference signals of MA) are sparse in a speci ¢ domain.

Moreover, these two kinds of signals can be well represented 8= Rc.T: (12)
by sparse representation due to the regularity of PPG and n
acceleration signals (the reference signals of MA). where$ can be transformed into a cleansed PPG signal.

If one raw PPG signal contains strong MA, we assume thatThe vector§ 2 R™M" 1 s transformed into one matrix

the STFT magnitude of raw PPG signal, 22 R(MM 1 = &2 RMn which can be used to get a cleansed PPG signal
can be approximately a sum of the STFT magnitude of cleanthe time domain.
PPG signals 22 R™M" 1 | and the STFT magnitude of MA,  Using 8, a cleansed PPG signal in the time domain can
m 22 RMM1  The assumption can be expressed by:  be obtained by inverse STFT transform. Here inverse STFT
transform is used to transform the obtained signal in the STFT
magnitude domair$, into a cleansed PPG signal in the time

The assumption used in the paper is similar to the assumpt@#mMain,Srecon , Which will be used in spectral peak tracking.
used in the reference [36] for Speech enhancement. 11N@te that, for inverse STFT tranSform, the phase of the raw
assumption used by [36] is that one raw speech signal R&G signalx, is used. The process can be expressed by
approximately a sum of spectral magnitudes of clean speech

signal and noise. Srecon = ISTFT( 8); (13)

The purpose of the assumption is that: if one raw PPG )
signal contains strong MAD = [RR]; at this time, if wherelSTFT denotes inverse STFT transform.

the assumption can be satis ed, the constrained problemThe process of sparse representation-based MA elimination

(introduced by the next equation (11)) of the proposed M&PProach is given imigorithm 1. In the OMP algorithm of
elimination approach can be used to eliminate MA. this process, for dictionary matri®, the matrix with indices

In sparse representation-based MA elimination, the aim BfitS columns in is denoted byD . In the OMP aIgori'Fhm,
sparse representation algorithm is to approximatith low each iteratiort of the while-loop consists of two steps: atom

error using linear combination of a few atoms (chosen frofflection and update of the coding vector. The step of atom
dictionary D) that are correlative tox. Note that the aim of selection selects the atom that is most coherent to the current

residualf, implemented in rst two lines of the while-loop.
D = R, the aim of sparse representation algorithm is t-Bhe, stgp of update of the coding vector_scete the ortholgonal
approximatex with low error using linear combination of Projection ofx onto the subspac® , implemented in the
a few atoms fromR. If D = [RR], sparse representationth'rd line of the while-loop. New residual is computed in the

algorithm aims to approximate with low error using a sum fourth line of the while-loop.

of a linear combination of atoms from the PPG diction&y

and a linear combination of atoms from the MA diction&y p. Spectral peak tracking
The constrained problem of the proposed MA elimination

approach can be represented by

X=s+m (20)

sparse representation algorithm depends on dictiobarif

Using the cleansed PPG sigrsalcon , @ spectral peak track-
ing algorithm we proposed in [12] is used to get HR value.
minkx  Dck, The algorithm is performed in the spectrdm(calculated by
b kek. K (11) Periodogram) o6recon -

- 0 Before the algorithm starts, some variables are de rgg.
where x is the STFT magnitude of a raw PPG signal aftas the frequency location index of HR estimated in the previous
bandpass lteringD is the dictionary after correlation deci-time window.Lr; =[Lp s;  sLpt ], whereLgy is
sion (D= R orD =[R R]), K is a small positive integec  the range of fundamental frequency of HR, angis a small
is a sparse coef cient vectoc = ¢ or ¢ = [c. ¢;]", where positive integerLr, = [2(L p s 1+1; ;2(Lp +
c- andc, are sparse coef cients correspondingRoandR . s 1)+1], whereLg; is the range of rst-order harmonic

The constrained problem (11) can be solved by marfgequency of HRLO(i = 1; 2) denotes the frequency location
approaches, such as orthogonal matching pursuit (OMP) [3aflexes of two dominant peaks Ingy, andLi(i = 1; 2) is
and basis pursuit denoising [37]. These approaches solve fitten Lr,. Here dominant peak denotes the spectral peak
problem based on different criteria and procedures. We chogigh an amplitude larger than a threshold of the maximum
OMP in our experiments because of its low complexity anamplitude.
simple implementation [38]. OMP is a greedy algorithm used Depending on the variables, a harmonic (gaif; le)(i;j 2
to choose atoms from a dictionary [31]. f1; 2g) with a harmonic relation is de ned. Also, one group
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Algorithm 1 Sparse representation-based MA elimination jndexes ofN equal frequency bins being from the division of

Input: araw PPG signaday and the acceleration signal aftedocation index of the spectruf@; fs].
bandpass Iteringa;ay , the PPG dictionarR and the MA
dictionaryR, and a small positive integé . V. DATA SETS AND PERFORMANCEINDEXES
Output: a cleansed PPG signgkcon - A. Data sets
Perform STFT transform fos.aw andasaw ,
getting X andA.
X = JSTFT(S raw )j-
A = |STFT(a raw )i-
TransformX andA into two vectorsx anda.
Perform correlation decision that compute correlation
betweenx anda, getting the dictionanD used in
sparse representafpon. j

Using different types of physical exercises consisting of
many different motions, we evaluated the performance of the
proposed HR monitoring approach. In the experiments of this
paper, we showed the performance of HR estimation on six
data sets recorded under six common motions: walking, fast
running, beckoning, swing arm, elliptical trainer and deep keen
bend, which were all related to hand movements because hand
movements are the main source of MA [15]. Note that the hand

D=RorD = RR ' movements of these motions are from different directions,
Perform OMP algorithm used to compute sparse because the hand movements in practical application scenario
coef cient vectorc. are from different directions. Fig. 3 gives the sketch maps of

Set ¢=1fg, c=0,f=xt=0. the six common motions: walking, fast running, beckoning,

while kckOT K do swing arm, elliptical trainer and deep keen bend.

h=D"r.
e = o [fargmax i jh(ig.
c= DT D, DT _ x
t+1 t+1
r=x Dc.
t=t+1. (a) (b) © (@)
end while

Get cleansed PPG signals in the STFT magnitude domain.
4 = Rc.", wherec,. (being fromc) is sparse
coef cients corresponding t&.

Transformg into one matrixS.

Perform inverse STFT transform f&.

Srecon = ISTFT( 5). Fig. 3: The sketch maps of six common motions.(a) walking.
(b) fast running. (c) beckoning. (d) swing arm. (e) elliptical
. . trainer. (f) deep keen bend.
fL9;L3; 55 +1; 521 + 1g is de ned. Based on the har-
monic pair and the group, three labels are de ned. Label 1 Note that six data sets used in this paper were recorded
mainly represents the frequency location index of a spectthiring six motions.Runningwas recorded during walking
peak selected from the harmonic péir?; L{)(i;j 2 f1; 2g). and fast runningBeckoningwas recorded during beckoning.
Label 2 represents the frequency location index (from ti®wing Armwas recorded during swing arrlliptical Trainer
group fL ;L% 52 + 1; 521 + 19) that is closet to the was recorded during elliptical traineReep Keen Benavas
frequency location index of HR in the previous time windowecorded during deep keen bemdixture was recorded during
Label 3 represents the frequency location index of the spectpgickoning, swing arm and deep keen bend.
peak of HR in the previous time window. The data set (calleRunning) recorded during walking and
The algorithm mainly consists of two steps: random foresfiast running was rst used in [3]. It was recorded from 12
based classi er training and spectral peak tracking using thelunteers with age ranged from 18 to 35, being composed
trained classi er. The rst step aims to train random forestof 12 recordings. In each recording, there is a single-channel
based classi er. Based on the trained classi er, the second stBG signal, a three-axis acceleration signal and an ECG signal,
is to locate the spectral peak of HR in the spectfunifter recorded simultaneously from a subject. All signals were
the second step, if the class label of the classi er is Lakigl sampled at 125Hz. In each recording, subjects rst walked
=1, 2, or 3), the frequency location index of the spectral peakth 1-2 km/h for 0.5 minute, then ran with 6-8 km/h for 1
corresponding to Labélwould become the frequency locationminute, next ran with 12-15 km/h for 1 minute, then ran with
index H associated with HR in the current time window.  6-8 km/h for 1 minute, next ran with 12-15 km/h for 1 minute,

The frequency location indedd can be transformed to HR and nally walked with 1-2 km/h for 0.5 minute.

(e) ®

value through the following rule: The other ve data sets (Beckonin§wing Arm,Elliptical
Trainer, Deep Keen Bendnd Mixture) were recorded during
HR = 60 H 1fS (BPM); (14) beckoning, swing arm, elliptical trainer and deep keen bend.
N The rst four data set was from 9 volunteers with age ranged
wherefs denotes the sampling rate, BPM denotes beat pfeom 18 to 35, being composed of 9 recordings. The data set
minute, andH belongstdl; 2; ;N gwhich are the location of Mixture was from 4 volunteers, consisting of 4 recordings.
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Mixture was recorded during a mixture of three motions
(beckoning, swing arm and deep keen bend). The data set con-
sists of four recordings. In each recording, subjects rested for
the rst and last 0.5 minutes. For the other 3 minutes, subjects
performed two types of motions. For the rst type, subjects
performed beckoning for 1.5 minutes, and then performed
swing arm for 1.5 minutes. For the second type, subjects
performed beckoning for 1.5 minutes, and then performed
deep keen bend for 1.5 minutes. For four recordings in
Mixture, the rst two recordings belong to the rst type, and
Fig. 4: (a) The block diagram of the hardware setup for datae last two recordings belong to the second type.
recording. The ECG sensor was used to obtain a three-lead
ECG: LA, RA and LL. The LA and RA were placed at leftB. The performance indexes

and right chest, and LL was placed at the left lower abdomen.1) The performance index for identifying MA intensity:
To collect PPG signals, a re ective pulse oximeter sensor with To better evaluate the performance of HR estimation, an
green LED was used. The PPG sensor was placed at the bag&ctive way is to see whether one approach can work well
of the wrist. To collect three-axis acceleration data, ADXL348n the data set containing strong MA. To achieve this, it is
was used. All the data from the sensors were processedd¥tessary to identify MA intensity in PPG signals, namely to
STM32 which is a chip used for conguring ECG, PPGdentify whether PPG signals contains strong MA. If one ap-
and acceleration sensors. Finally, all the data from STM3¢oach can achieve a satisfactory accuracy for HR monitoring
were transmitted to a host computer used for data analysising PPG signals containing strong MA, it is robust to strong
processing and presentation. (b) A subject with the hardwafga, indicating a good performance of this approach.
In order to identify MA intensity in one recording, namely,

to identify whether MA in one recording is very strong, the
anh recording lasts for4 minutes. In eagh recording_, thefedll%portion of time windows identi ed as being very strong
a single-channel PPG signal, a three-axis acceleration sigpabne recording is calculated. The proportion is denoted by

and an ECG signal, recorded simultaneously from a SUbjeﬁﬁensiw and calculated by the following equation:
All signals were sampled at 125Hz. Fig. 4(a) shows the block
o

diagram of the hardware setup for data recording. An example Intensity = No (15)
of a subject with the hardware is shown in Fig. 4(b). To'

The details of the other ve data sets (Beckoni®ying where N, denotes the number of time windows identi ed
Arm, Elliptical Trainer, Deep Keen Bendind Mixture) are as being very strong by the condition expressed in the next
described as follows. equation, and’, denotes total number of time windows in one

Beckoningwas recorded during beckoning. In each recordecording. The value olntensity is between 0 and 1. The
ing, subjects rested for the rst and last 0.5 minutes. Fddrger the value ofntensity is, the stronger the MA in one
the other 3 minutes, subjects performed the movement retording is.
beckoning. The movement of beckoning was very similar with Table | lists the comparison of six data sets (Running,
maneki-neko (literally meaning beckoning cat) which is aBeckoning,Swing Arm,Elliptical Trainer, Deep Keen Squat
common Japanese lucky gurine that depicts a cat beckoniagd Mixture) in terms ofintensity . For the six data sets,
with an upright paw. the averages dhtensity s of all recordings were 0.35, 0.22,

Swing Armwas recorded during swing arm. In each record@.43, 0.54, 0.57 and 0.21 respectively. From the results we can
ing, subjects rested for the rst and last 0.5 minutes. For tleee that the MA irElliptical Trainer and Deep Keen Squat
other 3 minutes, the arm wearing sensors swung fore backward more strong than the MA iRunning, Fortune catand
with about an angle of sixty degrees. Swing Arm. The results indicates that MA elimination and

Elliptical Trainer was recorded during elliptical trainer. INHR estimation on the data sets Bfiiptical Trainer and Deep
each recording, subjects rested for 0.5 minute, then exerciségkn Squagre more challenging than those of the data sets
with 4-6 km/h for 1 minute, next exercised with 7-8 km/tof Running,Beckoningand Swing Arm.
for 1 minute, then exercised with 4-6 km/h for 1 minute, and Note that, to obtailN, in equation (15) for one recording,
nally rested for 0.5 minute. we should design one condition to identify whether the MA in

Deep Keen Bendvas recorded during deep keen bendne time window is strong or not. By comparing the spectra of
In each recording, subjects rested for the rst and last Oibth PPG signals with very strong MA and PPG signals with
minutes. For the other 3 minutes, subjects performed thet strong MA, we observed that the spectrum of the former
motion of deep keen bend. Before starting, subjects stood withually has more spectral peaks than the spectrum of the
the waist and back straight and with the knees being in tkater, and also obtained that the distance between the highest
same direction as the tips of the toes. Note that the movemeetk and the true peak associated with HR (calculated by the
of squat should be natural and smooth, and hands shouldsiraultaneously ECG signal) in the former is usually farther
put on the knees when reaching the lowest point of squat th@n the distance in the latter. Based on the observations, one
that the hands can give proper support when getting up. condition used to calculatd, in equation (15) is de ned as

111

99" | 99"#$%&$'

) i
(a) The block diagram of the hard{b) A subject with the hardware.
ware setup.
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TABLE [|: The comparison of six data sets in termslofensity . The larger the value ofntensity is, the stronger the
MA in one recording is. This table shows thalliptical Trainer and Deep Keen Squatave more strong MA thaRunning,
Beckoning,Swing Armand Mixture.

Intensity Subject

Subl Sub2 Suh3 Sub4 Suhb5 Suh6 Suh?7 Suh8 Suh9 Subl10 | Subll | Subl2 Ave
Data sets

Running 0.64 0.78 0.62 0.15 0.04 0.12 0.00 0.23 0.00 0.71 0.25 0.63 0.35
Bedoning 0.23 0.30 0.21 0.32 0.17 0.20 0.19 0.18 0.15 - - - 0.22
Swing Arm 0.04 0.56 0.35 0.51 0.19 0.34 0.30 0.79 0.79 - - - 0.43
Elliptical Trainer 0.18 0.06 0.74 0.62 0.74 0.74 0.60 0.42 0.75 - - - 0.54
DeepKeen Squat 0.57 0.77 0.67 0.75 0.30 0.78 0.51 0.68 0.10 - - - 0.57
Mixture 0.51 0.13 0.05 0.16 - - - - - - - 0.21

motion recognition, the rst ve data sets (Running, Beckon-
n<= ; & d<= (16) ing, Swing Arm, Elliptical Trainer,Deep Keen Sqguadopt

the leave-one-subject-out method, which is chosen because
wheren denotes the number of spectral peaks in the spectrintesembles the real world situation [29]. In the real world
of PPG signal in one time windowd denotes the distancesituation, one method is trained by the data from all the
between the highest peak and the true peak associated wifilable subjects, and then the method will be tested on new
HR, and ; and , denote two small positive numbers beingubjects whose data did not exist in the data during training. In
3 and 2 in our experiments. The process of using (16) fRe method of leave-one-subject-out, each time the data from
calculateN, is: set the initial value ofN, to O; if MA in  one of the subjects are used as testing signals, and the data
one time window is identi ed as being very strong by (16)from the remaining subjects are used as training signals. Note
No = N, +1, otherwiseN, would not change. that, for the data set d¥lixture, training data are obtained by

2) The performance indexes for HR monitoring: another way, instead of the method of leave-one-subject-out.

To evaluate the performance of our proposed HR monitorirgpeci cally, the data in the other ve data sets are used as
approach, the simultaneous ECG signal was used to calcula#éning data, and the data Mixture are tested. When testing
the ground-truth. Using the ground-truth, two performandbe performance oMixture, this way is similar to the real
indexes used in [3] were exploited. One was the averagerld situation where the proposed method is trained by the
absolute error de ned as: data from many motions, and then the proposed method will

” be tested on a mixture of trained motions.
1 . , A First, we present the ef cacy of sparse representation (SR)-
Error = W - JHRest () HRwe OF @7 based MA elimination. Fig. 5 shows the elimination of MA
caused by three different motions: swing arm, elliptical trainer
whereHR e represents the ground truth of HR in theh and deep keen bend. In Fig. 5(a), (or Fig. 5(b), or Fig. 5(c)),
time window, HR es; denotes the estimated HR values, antiom the spectrum of raw PPG we can see that the spectral
W denotes the total number of time windows. peak associated with HR is not prominent due to the effect

The second one was the Bland-Altman plot used to verifff MA. In contrast, the spectrum of PPG after SR-based MA
agreement between the ground-truth of HR and the estimagiinination clearly presents the spectral peak associated with
HR values. In the plot, the horizontal axis represents t#&R. The experiment indicates that SR-based MA elimination
average of two measures (the ground-truth and the estimaté3)? eliminate MA caused by three different motions (swing
and the vertical axis represents the difference between the @8, elliptical trainer and deep keen bend), making the spectral
measurements, namely, the difference of the estimates andRR@K associated with HR more prominent, which can help to
ground-truth. The Limit of Agreement (LOA) expressed bybtain a more accurate HR value.

[ 1:96; +1:96 ] was also calculated here, whereis We then present the results of HR monitoring for some
the average of the differences between the estimates and gt@e-of-the-art HR monitoring approaches. Table Il lists the
ground-truth, and is the standard deviation of the differencescomparison of performances of some state-of-the-art HR mon-
In this range, 95% of all differences are inside. itoring approaches (RandomForest [12], temko [17], TROIKA
[3], JOSS [15] and EEMD [14]) in terms dError on six

data sets. Averaged across all the recordings in six data sets,
Error of the proposed approach was 2.40 1.30 BPM.

In this simulation, we evaluated the performance of HRhese results show that the proposed approach can achieve
estimation for six data sets &unning, Beckoning, Swing Arm,satisfactory accuracy on all six data sets, even on the two
Elliptical Trainer, Deep Keen Squand Mixture, respectively, challenging data set&lliptical Trainer andDeep Keen Squat.
which were recorded during six motions of walking, fast Moreover, from Table Il we can see that, RandomForest [12]
running, beckoning, swing arm, elliptical trainer and deep keamd temko [17] can achieve satisfactory accuracy on the data
bend. In the part of dictionary learning, the PPG dictionariesets ofRunning, Beckoning, Swing Aramd Mixture, whereas
and the MA dictionaries corresponding to the motions ithey can not work well on two challenging data sé&iHiptical
the six data sets were learned by MOD [28], separately. Toainer and Deep Keen Squat. For TROIKA [3], JOSS [15]
obtain the training data used for dictionary learning and humand EEMD [14], they can work well ofRunning, whereas

V. EXPERIMENTS
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they did not always work well on the other ve data sets.
In contrast, the proposed approach can achieve satisfactor 1o Simultaneously Recorded ECG | Periodogram of ECG

performance on all the six data sets. The results means ths i‘{ﬂL M "“”L“”“'{ S0 e {
the proposed ap_proach is more robust_ than the other ve S e ceconay e o
approaches for different motions in the six data sets. Further, Raw PPG signal periodogram of Raw PPG

200 ﬂ|

we can see that the standard deviation (std) of the proposet o EM«/\W @100W

method (1.30 BPM) is smaller than those of the other ve ®o 2 4 6 8 o 150 302 455 o607
methods: 7.12 BPM for RandomForest [12], 9.73 BPM for PG St At periodomam of Poe After
temko [17], 10.82 BPM for TROIKA [3], 15.97 BPM for JOSS o5 oRpesed VA ciminaton 10 —SRbased MA elimination
[15] and 19.36 BPM for EEMD [14]. The results again indicate 3,0,2M\/WWW\/\”M = i +
that the proposed approach is more robust than the other ve C Mmeceeonis 0 e
approaches for different motions in the six data sets.

In the table, for the performances of the other ve methods, (@) Swing arm.

we found that there are some outliers, such as 70.18 in
TROIKA [3]. Considering theErrors without outliers larger

than 15 BPM, the averag&rrors on all the recordings

for the ve methods are 3.25 BPM, 3.95 BPM, 3.52 BPM,
4.94 BPM and 2.95 BPM. If some outliers in the other ve
methods are removed, we also remove the corresponding errors
in the proposed method. Since the outliers in the other ve
methods are different, the proposed method removes different
errors, obtaining ve different averagErrors: 2.35 BPM,

2.27 BPM, 2.40 BPM, 2.19 BPM and 2.07 BPM. The results
show that the performance of the proposed method is still
better than that of the other ve methods, even though the
outliers have been removed.

To better compare the methods in Tabletilest is adopted (b) Elliptical trainer.
to test whether the estimation errors of the proposed method
are signi cantly different from those of the other ve methods.
Here we consider averadgrors without outliers larger than
15 BPM. Based ottest, the estimation errors of the proposed
method was signi cantly different from those of the other ve
methods at the signi cant level =0:01. The p values were
7:99 103! for the proposed method and randomForest [12],
2:22 108 for the proposed method and temko [1Zi61
107® for the proposed method and TROIKA [#;86 107°
for the proposed method and JOSS [15], &®@l 10%% for
the proposed method and EEMD [14].

To further show the performance of the proposed approach,
Fig. 6 gives the Bland-Altman plot. In the gure, the absolute (c) Deep keen bend.
value of for six data sets were 0.52 BPM, 0.46 BPM,
0.29 BPM, 0.88 BPM, 0.23 BPM and 0.09 BPM. From thglg 5: Experiments showing the benet of SR-based MA
results we can see that in the six data sets are all close€limination using PPG signal segments during three motions:
to zero. We also can see that most of the points are clci¥ing arm, elliptical trainer and deep keen bend. The gure
to , which means that the estimates are close to the grouffows simultaneously recorded ECG and its spectrum (calcu-
truth. The results mean that the proposed approach can achigied by Periodogram), simultaneously recorded raw PPG and
satisfactory accuracy on all six data sets, indicating that it f§ SPectrum, and PPG after SR-based MA elimination and its
robust to different MAs caused by different motions and &Pectrum. The red circles |_nd|cate the spectral peak associated
robust to strong MAs in the data sets Bfliptical Trainer with HR calculated from simultaneously recorded ECG.
andDeep Keen Squat. This gure indicates a good estimation
performance of the proposed approach.

Fig. 6 can also indicate the range of HR where MA is very
strong. For example, from Fig. 6(e) we can see that largeln this paper, we focus on some common quasi-periodic
errors (outside the red line) occur frequently in a low HRhotions that could be modeled. Though quasi-periodic mo-
range. This indicates that, f@eep Keen Squan Fig.6(e), tions are a speci c subset of motions, eliminating MA caused
the proposed method made large errors in a low HR rands. quasi-periodic motions are still challenging, because quasi-
This phenomenon may indicate that MA is very strong in periodic motions may be detected as a HR component falsely
low HR range forDeep Keen Squat. and thus may result in inaccurate estimation of HR.

VI. DISCUSSIONS
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